Perform Cloud Data Science with Azure Machine Learning

Perform Cloud Data Science with Azure Machine Learning

Course overview

The main purpose of the course is to give students the ability to analyze and present data by using Azure Machine Learning and to provide an introduction to the use of machine learning with big data tools such as HDInsight and R Services.

Target audience

The primary audience for this course is people who wish to analyze and present data by using Azure Machine Learning.

The secondary audience is IT professionals, Developers, and information workers who need to support solutions based on Azure machine learning.

Objectives

After completing this course, students will be able to:

Explain machine learning, and how algorithms and languages are used
Describe the purpose of Azure Machine Learning, and list the main features of Azure Machine Learning Studio
Upload and explore various types of data to Azure Machine Learning
Explore and use techniques to prepare datasets ready for use with Azure Machine Learning
Explore and use feature engineering and selection techniques on datasets that are to be used with Azure Machine Learning
Explore and use regression algorithms and neural networks with Azure Machine Learning
Explore and use classification and clustering algorithms with Azure Machine Learning
Use R and Python with Azure Machine Learning, and choose when to use a particular language
Explore and use hyperparameters and multiple algorithms and models, and be able to score and evaluate models
Explore how to provide end-users with Azure Machine Learning services, and how to share data generated from Azure Machine Learning models
Explore and use the Cognitive Services APIs for text and image processing, to create a recommendation application, and describe the use of neural networks with Azure Machine Learning
Explore and use HDInsight with Azure Machine Learning
Explore and use R and R Server with Azure Machine Learning, and explain how to deploy and configure SQL Server to support R services

Pre-requisites

In addition to their professional experience, students who attend this course should have:

Programming experience using R, and familiarity with common R packages
Knowledge of common statistical methods and data analysis best practices.
Basic knowledge of the Microsoft Windows operating system and its core functionality.
Working knowledge of relational databases.

Certification info

Candidates for this exam are data scientists or analysts who use Azure cloud services to build and deploy intelligent solutions. Candidates have a good understanding of Azure data services and machine learning and are familiar with common data science processes such as filtering and transforming data sets, model estimation, and model evaluation.

Candidates for this exam should have experience publishing effective APIs for knowledge intelligence.